

ŠOLSKI CENTER CELJE

SREDNJA ŠOLA ZA STROJNIŠTVO, MEHATRONIKO IN MEDIJE

RAZISKOVALNA NALOGA

AVTOMATIZIRANA NAPRAVA ZA ŠILJENJE MEHKIH MATERIALOV

Tehnik mehatronike - PTI

Avtorji:

Marko KOVAČIČ, M-1. f Primož KOPRIVC, M-1. f

Domen SEVNIK, M-1. f

Mentorji: Matjaž CIZEJ, univ. dipl. inž. Stevo ROMANIĆ, dipl. inž.

Celje, marec 2017

ZAHVALA

Zahvaljujemo se profesorju Matjažu Cizeju za pomoč pri programiranju celotnega izdelka. Profesorju Stevu Romaniću pa za konstruiranje in izdelavo strojnih delov, pri katerih so pomagali tudi sošolci. Obema profesorjema pa se še enkrat zahvaljujemo za koordiniranje celotnega projekta.

Zahvalili bi se tudi naši profesorici slovenščine gospe Brigiti Renner, ker je skrbno prebrala in lektorirala raziskovalno nalogo.

POVZETEK

Naša naloga je bila nadgradnja avtomatizirane naprave za šiljenje mehkih materialov. Naprava že deluje tako, da samostojno prime obdelovanec, ga prenese v napravo za šiljenje, kjer ga ošili, in ga odda na odlagalno mesto. V obstoječem stanju naprave je bila narejena že večina strojnega in pnevmatskega dela. Porodila se nam je ideja, da bi dodali ekran na dotik, menjali PLK, ponovno ožičili napravo in dodali škatlo za shranjevanje odšiljenega materiala. Najprej smo narisali skice, nato pa še tehnične risbe. Izdelali smo škatlo za odvajanje odšiljenega materiala in jo vgradili v spodnji del naprave. Dodali smo še nosilec za ekran na dotik in ga povezali z novim krmilnikom (SIMATIC S7-313c), ki je sestavljen iz napajalnika, vhodov, izhodov in mrežne kartice. Star krmilnik smo zamenjali zaradi novega programa, ki je sedaj napisan v TIA Portal-u V13 z grafičnim načinom. Z menjavo krmilnika smo morali zamenjati tudi celoten električni del. Tako smo dosegli, da lahko na ekranu na dotik spremljamo dogajanje trenutnega stanja naprave.

KLUČNE BESEDE

MPS-postaja, krmilnik, zaslon na dotik, senzorji, izdelek, pnevmatika

SUMMARY

Our research task was upgrading the automatic device for sharpening soft materials. The device is already operating in such a way, that it holds the workpiece, then it is transferred to the device for sharpening and when its sharpened it carries it over to the storage position. In the previous state it already had most of the mechanical and pneumatic parts. We had an idea of adding a touch screen, switching the PLC, re-wireing the device, adding a box for storing the sharpening waste. First we drew the sketch and then the technical drawings. We created a box for waste material drainage and built it into the bottom of the device. We added a carrier for the touch screen and connected it to the new controller (SIMATIC S7-313c), which consists of a power supply, inputs, outputs and a network card. The old controller was replaced because of the new program, which is now written in the TIA Portal V13 in graphic mode. By replacing the controller, we needed to replace the entire electrical part. Thus, we have achieved that we can monitor the position on the screen on the current status of the device. The device was manufactured in four months.

KEYWORDS

MPS station, controller, touch screen, sensors, product, pneumatics

Kazalo vsebine

1.0	UVOD	8
1.1	L HIPOTEZE	8
2.0	OPIS SKLOPOV	9
2.1	L MEHANSKI SKLOP	9
2.2	2 ELEKTRIČNI OZ. KRMILNI SKLOP	
2.3	3 PNEVMATSKI SKLOP	11
3.0	KRMILNIK	
4.0	ZASLON NA DOTIK	
4.1	PRVI ZASLON	
4.2	2 DRUGI ZASLON	14
4.3	3 TRETJI ZASLON	15
5.0	PROGRAM ZA PROGRAMIRANJE	
6.0	DELOVANJE NAPRAVE PO KORAKIH	
6.1	PRVI KORAK	
6.2	2 DRUGI KORAK	
6.3	3 TRETJI KORAK	
6.4	4 ČETRTI KORAK	
6.5	5 PETI KORAK	
6.6	5 ŠESTI KORAK	
6.7	7 SEDMI KORAK	20
6.8	3 OSMI KORAK	20
6.9	DEVETI KORAK	21
6.1	LO DESETI KORAK	21
6.1	L1 ENAJSTI KORAK	22
6.1	12 DVANAJSI KORAK	22
6.1	13 TRINAJSTI KORAK	23
6.1	14 ŠTIRINAJSTI KORAK	23
6.1	L5 PETNAJSTI KORAK	24
6.1	L6 ŠESTNAJSTI KORAK	24

6.1	17 SEDEMNAJSTI KORAK	
6.1	18 OSEMNAJSTI KORAK	
6.1	19 DEVETNAJSTI KORAK	
6.2	20 DVAJSTI KORAK	
6.2	21 ENAINDVAJSETI KORAK	
6.2	22 DVAINDVAJSETI KORAK	
6.2	23 TRIINDVAJSETI KORAK	
6.2	24 ŠTIRIINDVAJSETI KORAK	
6.2	25 PETINDVAJSETI KORAK	
6.2	26 ŠESTINDVAJSETI KORAK	
7.0	POGONSKI ELEMENTI	
8.0	TABELA VHODOV IN IZHODOV	
9.0	NADGRADNJA NAPRAVE	
10.0	ZAKLJUČEK	
11.0	VIRI IN LITERATURA	
12.0	IZJAVA	

Kazalo slik

Slika 1: izdelovanje mehanskih sklopov	9
Slika 2: odrezovanje materiala	9
Slika 3: krmilnik in elektronika	10
Slika 4: prenosni kompresor	11
Slika 5: cev za dovod zraka	11
Slika 6: priključki za cevi	11
Slika 7: krmilnik SIMATIC S7-313c	12
Slika 8: zaslon na dotik	13
Slika 9: prvi zaslon	13
Slika 10: drugi zaslon	14
Slika 11: tretji zaslon	15
Slika 12: program	16
Slika 13: prvi korak	17
Slika 14: drugi korak	17
Slika 15: tretji korak	
Slika 16: četrti korak	
Slika 17: peti korak	19
Slika 18: šesti korak	19
Slika 19: sedmi korak	20
Slika 20: osmi korak	20
Slika 21: deveti korak	21
Slika 22: deseti korak	21
Slika 23: enajsti korak	
Slika 24: dvanajsti korak	22
Slika 25: trinajsti korak	23
Slika 26: štirinajsti korak	23
Slika 27: petnajsti korak	24
Slika 28: šestnajsti korak	24
Slika 29: sedemnajsti korak	25
Slika 30: osemnajsti korak	25
Slika 31: devetnajsti korak	
Slika 32: dvajseti korak	
Slika 33: enaindvajseti korak	27
Slika 34: dvaindvajseti korak	27
Slika 35: triindvajseti korak	
Slika 36: štiriindvajseti korak	
Slika 37: petindvajseti korak	
Slika 38: šestindvajseti korak	29
Slika 39: pnevmatski valj	
Slika 40: regulator tlaka	
Slika 41: tabela vhodov in izhodov	
Slika 42: načrtovanje	

1.0 UVOD

Naša naprava za šiljenje mehkih materialov je popolnoma avtomatizirana. Sestavljena je iz treh sklopov: mehanskega, električnega oz. krmilnega in pnevmatskega sklopa. Sestavni deli so: zalogovnik za svinčnike, prijemalna enota, prijemalne čeljusti z vodili, elektromotor s šilčkom, drča za ošiljene svinčnike, odsesovalna komora za šiljenje, škatla za odšiljke, držalo za zaslon na dotik. Ko zaženemo napravo, cilinder A potisne svinčnik naprej, prijemalna enota ga prime, ga zavrti za 90°, ga nese do prijemalnih čeljusti z vodili, ki ga primejo. Nato se zažene elektromotor, čeljusti se pomaknejo do šilčka, ki ošili svinčnik, čeljusti se odmaknejo, motor se izklopi. Prijemalna enota prime svinčnik, ga nese do drče za ošiljene svinčnike, čeljusti se razklenejo in svinčnik pade. Prijemalna enota se vrne na prvotno pozicijo.

1.1 HIPOTEZE

- 1. Zamenjati krmilnik
- 2. Napisati nov program v grafičnem načinu
- 3. Dodati zaslon na dotik
- 4. Napisati nov program za zaslon na dotik
- 5. Dodati mrežno kartico za povezavo med zaslonom na dotik in krmilnikom
- 6. Dodati števec
- 7. Dodati škatlo za odšiljke
- 8. Dodati držalo za zaslon da dotik
- 9. Preko zaslona na dotik voditi napravo

2.0 OPIS SKLOPOV

2.1 MEHANSKI SKLOP

V ta sklop štejemo nosilce pnevmatičnih cilindrov, šilček, podložke, podložne plošče, prijemalne čeljusti z vodili, čeljusti, matice ... Izdelani so s pomočjo strojev. Ta sklop opravlja glavno fizično delo (prijemanje, stiskanje, rotiranje za 90° in šiljenje) in ima najpomembnejšo nalogo, saj brez tega naprava ne bi bila to, kar je. Naknadno smo izdelali škatlo za odšiljke ter roko za zaslon na dotik.

Slika 1: izdelovanje mehanskih sklopov

Slika 2: odrezovanje materiala

2.2 ELEKTRIČNI OZ. KRMILNI SKLOP

Glavni del tega sklop je krmilnik, s pomočjo katerega naprava deluje avtomatizirano. V programu TIA Portal V13 smo napisali program, ga namestili na nov krmilnik, ki smo ga zamenjali z novim. Deluje na 24V napetosti. Sem spadajo tudi žice in priključne sponke. Na pnevmatičnih cilindrih so že bili nameščeni senzorji za zaznavanje položaja batnice, povezni so na priključne sponke, kamor so zvezani pnevmatični elektromagnetni ventili s senzorji. Na vsakem cilindru najdemo po dva senzorja, razen na pnevmatičnem vodilu imajo nameščene tri, saj tam potrebujemo tri položaje. Na ostalih cilindrih potrebujemo samo dve stanji: izvlečeno in uvlečeno.

Slika 3: krmilnik in elektronika

2.3 PNEVMATSKI SKLOP

V tem sklopu najdemo pnevmatične cilindre, pnevmatične elektromagnetne ventile, cevi za povezavo cilindrov. Sedem je dvosmernih pnevmatičnih cilindrov, sedem je pnevmatičnih elektromagnetnih ventilov za vsak cilinder en. Cilindri so pritrjeni na nosilce, označeni in povezani s cevmi premera 4 mm na elektromagnetne ventile. Nato so ročno preizkusili delovanje vseh cilindrov. S pomočjo dušilnih ventilov so jim nastavili hitrost.

Slika 4: prenosni kompresor

Slika 5: cev za dovod zraka

Slika 6: priključki za cevi

3.0 KRMILNIK

Programirljivi logični krmilnik (angleško PLC) je modularni računalnik, ki je zelo uporaben zaradi velike razširitve modulov. Krmilnik, ki smo ga uporabili v postaji MPS (SIMATIC S7-313c), vsebuje 24 vhodov in 16 izhodov. Uporabili smo tudi mrežno kartico, katera nam omogoča povezavo z zaslonom na dotik.

Slika 7: krmilnik SIMATIC S7-313c

4.0 ZASLON NA DOTIK

Uporabili smo Siemensov (KTP400 Basic color PN) zaslon na dotik, ki nam omogoči povezavo z krmilnikom preko mrežne kartice.

Slika 8: zaslon na dotik

4.1 PRVI ZASLON

Na prvem zaslonu je prikazana predstavitvena stran (podatki šole, dijakov ter profesorjev).

Slika 9: prvi zaslon

4.2 DRUGI ZASLON

Na drugem zaslonu so prikazani koraki/izvajanje korakov.

ZAČETNI KORAK	A VEN	C DOL Z	D SKUPAJ Z	A NOT	
C GOR Z	B NAPREJ	B USTAVI S	E ZASUK S	C NAVZDOL S	
D NARAZEN S	C NAVZGOR S	F ZAPIRA S	MOTOR	G РОМІК К	
G ODMIK S	C DOL S	D PRIME S	F ODPRE S	C GOR S	
B NAPREJ K	D ODPRE K	E ZASUK K	B NAZAJ K		
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	S1	
START	KORAČNO	AVTOMATSKO	IZKLOP V SILI	S3	

Slika 10: drugi zaslon

4.3 TRETJI ZASLON

Na tretjem zaslonu je prikazan števec za štetje izdelkov.

Slika 11: tretji zaslon

5.0 PROGRAM ZA PROGRAMIRANJE

			%DB10 "Block 1 DB"		
			%ED10		
			7011010		
			"Block_1"		
		EN			
false	_	OFF_SQ			
false	—	INIT_SQ			
false	—	ACK_EF			
false	_	S_PREV			
false	—	S_NEXT		S_NO	
false	—	SW_AUTO		S_MORE	<u> </u>
false	_	SW_TAP		S_ACTIVE	<u> </u>
false	—	SW_TOP		ERR_FLT	
false	_	SW_MAN		AUTO_ON	<u> </u>
0		S_SEL		TAP_ON	<u> </u>
false	_	S_ON		TOP_ON	<u> </u>
false		S_OFF		MAN_ON	<u> </u>
false	—	T_PUSH		ENO	

Slika 12: program

6.0 DELOVANJE NAPRAVE PO KORAKIH

Ko so vsi pogoji koraka izpolnjeni se lahko izvede naslednji korak.

6.1 PRVI KORAK

Pogoji za začetek obratovanja.

Slika 13: prvi korak

6.2 DRUGI KORAK

Ko so izvedeni vsi pogoji prvega koraka, cilinder A potisne obdelovanec na mesto za prijem.

Slika 14: drugi korak

6.3 TRETJI KORAK

Cilinder C se pomakne navzdol proti obdelovancu.

Slika 15: tretji korak

6.4 ČETRTI KORAK

Cilinder D prime obdelovanec.

Slika 16: četrti korak

6.5 PETI KORAK

Pri petem koraku se cilinder A pomakne na začetni položaj in cilinder C se pomakne navzgor.

Slika 17: peti korak

6.6 ŠESTI KORAK

Cilinder B se pomakne proti sredini.

Slika 18: šesti korak

6.7 SEDMI KORAK

Cilinder B se ustavi na sredini

Slika 19: sedmi korak

6.8 OSMI KORAK

Cilinder E se zarotira za 90 stopinj.

Slika 20: osmi korak

6.9 DEVETI KORAK

Cilinder C se pomakne navzdol.

Slika 21: deveti korak

6.10 DESETI KORAK

Cilinder D spusti obdelovanec.

Slika 22: deseti korak

6.11 ENAJSTI KORAK

Cilinder C se pomakne navzgor.

6.12 DVANAJSI KORAK

Cilinder F močno prime obdelovanec.

Slika 24: dvanajsti korak

6.13 TRINAJSTI KORAK

Vklopi se motor za šiljenje.

6.14 ŠTIRINAJSTI KORAK

Cilinder G se pomakne proti šilčku.

Slika 26: štirinajsti korak

6.15 PETNAJSTI KORAK

Cilinder G se odmakne od šilčka na začetni položaj.

6.16 ŠESTNAJSTI KORAK

Motor se izklopi.

Slika 28: šestnajsti korak

6.17 SEDEMNAJSTI KORAK

Cilinder C se pomakne navzdol.

Slika 29: sedemnajsti korak

6.18 OSEMNAJSTI KORAK

Cilinder D prime obdelovanec.

Slika 30: osemnajsti korak

6.19 DEVETNAJSTI KORAK

Cilinder F odpre obdelovanec.

6.20 DVAJSETI KORAK

Cilinder C se pomakne navzgor.

Slika 32: dvajseti korak

6.21 ENAINDVAJSETI KORAK

Cilinder B se pomakne proti koncu.

Slika 33: enaindvajseti korak

6.22 DVAINDVAJSETI KORAK

Senzor zazna na je cilinder B na koncu.

Slika 34: dvaindvajseti korak

6.23 TRIINDVAJSETI KORAK

Cilinder D odpre obdelovanec.

Slika 35: triindvajseti korak

6.24 ŠTIRIINDVAJSETI KORAK

Cilinder E se zasuče za 90 stopinj.

Slika 36: štiriindvajseti korak

6.25 PETINDVAJSETI KORAK

Cilinder B se pomakne na začetni položaj.

Slika 37: petindvajseti korak

6.26 ŠESTINDVAJSETI KORAK

Vsi izklopi v sili se ponastavijo.

Slika 38: šestindvajseti korak

7.0 POGONSKI ELEMENTI

Za delovne operacije smo izbrali pnevmatske valje. Vse pnevmatske valje je poganjal batni kompresor z nazivnim tlakom 8 barov. Tlak smo z regulatorjem nastavili na 5 barov.

Slika 39: pnevmatski valj

Slika 40: regulator tlaka

8.0 TABELA VHODOV IN IZHODOV

V tag tabeli so definirane vse vhodno/izhodne enote in markerji, ki smo jih uporabili v našem projektu. Vhodi so definirani kot I124.0 pa do I126.0. Izhodi s Q124.0 pa do Q125.5. Markerji pa kot M10 pa do M24.1.

V prvem stolpcu smo napisali ime želenega vhoda, izhoda ali markerja. V drugem stolpcu je definiran podatkovni tip. Bool je podatkovni tip, ki ima dve vrednosti (TRUE, FALSE). Word je podatkovni tip, ki je vedno dolg 16bit. V tretjem stolpcu pa je zapisano na kateri priključek na krmilniku je vezan na vhod, izhod ali marker. V zadnjem stolpcu smo si naredili kratke zapiske, kakšno funkcijo ima določen vhod, izhod ali marker.

1		1SA1	Bool	%1124.3	SENZOR 1SA1	33	-	A VEN	Bool	%M10.1	A VEN NA ZAČETKU
2	-00	1SA2	Bool	%1124.4	SENZOR 1SA2	34	-00	C DOL Z	Bool	%M10.2	C DOL NA ZAČETKU
З	-00	1YA1	Bool	%Q124.0	CILINDER 1YA1	35	-	D SKUPAJ Z	Bool	%M10.3	D SKUPAJ NA ZAČETKU
4	-00	2SB1	Bool	%I124.5	SENZOR 2SB1	36	-	C GOR Z	Bool	%M10.4	C GOR NA ZAČETKU
5	-00	2SB2	Bool	%1124.6	SENZOR 2SB2	37	-00	B NAPREJ	Bool	%M10.5	B NAPREJ DO VMESNEGA POLOŽAJA
6	-00	2SB3	Bool	%1124.7	SENZOR 2SB3	38	-	B USTAVI S	Bool	%M10.6	B USTAVI NA VMESNEM POLOŽAJU
7	-00	2YB1	Bool	%Q124.1	CILINDER 2YB1	39	-00	E ZASUK S	Bool	%M11.0	E ZASUK NA VMESNEM POLOŽAJU
8	-00	2YB2	Bool	%Q124.2	CILINDER 2YB2	40	-	C NAVZDOL S	Bool	%M11.1	C DOL NA VMESNEM POLOŽAJU
9	-00	3SC1	Bool	%1125.0	SENZOR 3SC1	41	-	D NARAZEN S	Bool	%M11.2	D NARAZEN NA VMESNEM POLOŽAJU
10	-00	3SC2	Bool	%1125.1	SENZOR 3SC2	42	-00	C NAVZGOR S	Bool	%M11.3	C NAVZGOR NA VMESNEM POLOŽAJU
11	-00	3YC1	Bool	%Q124.3	CILINDER 3YC1	43	-	F ZAPIRA S	Bool	%M11.4	F ZAPIRA NA VMESNEM POLOŽAJU
12	-00	3YC2	Bool	%Q124.4	CILINDER 3YC2	44	-	MOTOR VKLOPI	Bool	%M11.5	MOTOR VKLOPI
13	-00	4YD1	Bool	%Q124.5	CILINDER 4YD1	45	-00	G POMIK K	Bool	%M11.6	G POMIK PROTI MOTORJU
14	-00	4YD2	Bool	%Q124.6	CILINDER 4YD2	46	-	G ODMIK S	Bool	%M11.7	G POMIK NA ZAČETNI POLOŽAJ
15	-00	5SE1	Bool	%1125.2	SENZOR 5SE1	47	-	C DOL S	Bool	%M12.0	C DOL NA VMESNEM POLOŽAJU
16	-00	5SE2	Bool	%I125.3	SENZOR 5SE2	48	-01	D PRIME S	Bool	%M12.1	D PRIME NA VMESNEM POLOŽAJU
17	-00	5YE1	Bool	%Q124.7	CILINDER 5YE1	49	-	F ODPRE S	Bool	%M12.2	F ODPRE NA VMESNEM POLOŽAJU
18	-00	5YE2	Bool	%Q125.0	CILINDER 5YE2	50	-	C GOR S	Bool	%M12.3	C GOR NA VMESNEM POLOŽAJU
19	-00	6SF1	Bool	%1125.4	SENZOR 6YF1	51	-	B NAPREJ K	Bool	%M12.4	B NAPREJ DO KONCA
20	-00	6SF2	Bool	%1125.5	SENZOR 6YF2	52	-	B USTAVI K	Bool	%M12.5	B USTAVI NA KONCU
21	-00	6YF1	Bool	%Q125.1	CILINDER 6YF1	53	-00	D ODPRE K	Bool	%M12.6	D ODPRE NA KONCU
22	-00	6YF2	Bool	%Q125.2	CILINDER 6YF2	54	-	E ZASUK K	Bool	%M12.7	E ZASUK NA KONCU
23		7SG1	Bool	%1125.6	SENZOR 7SG1	55	-	B NAZAJ K	Bool	%M13.0	B NAZAJ NA ZAČETEK
24	-00	7SG2	Bool	%1125.7	SENZOR 7SG2	56	-00	ANOT	Bool	%M10.7	A NOT NA ZAČETKU
25		7YG1	Bool	%Q125.3	CILINDER 7YG1	57	-	START TIPKA	Bool	%M13.1	S TART TIPKA
26	-00	7YG2	Bool	%Q125.4	CILINDER 7YG2	58	-	KORAČNO	Bool	%M13.2	KORAČNO TIPKA
27	-00	AVT/KOR	Bool	%I126.0	IZBIRA AVTOMATSKO/KORAKI	59	-93	AVTOMATSKO	Bool	%M13.3	AVTOMATSKO TIPKA
28		IZKLOP V SILI	Bool	%1124.2	IZKLOP NAPRAVE V SILI	60	-	IZKLOP V SILI(1)	Bool	%M13.4	IZKLOP V SILI TIPKA
29	-00	MOTOR	Bool	%Q125.5	MOTOR ZA ŠILJENJE	61	-	Nastavitev vrednosti	Word	%MW20	Nastavitev vrednosti števca
30	-00	START	Bool	%1124.1	S TART NAPRAVE	62	-	Trenutna vrednost	Word	%MW22	Trenutna vrednost števca
31	-	VKLOP	Bool	%1124.0	VKLOP NAPRAVE	63	-	Nastavitev števca	Bool	%M24.0	Nastavitev števca
32	-00	ZAČETNI KORAK	Bool	%M10.0	ZAČETNI KORAK	64	-00	Tag_1	Counter	%C1	
33	-00	AVEN	Bool	%M10.1	A VEN NA ZAČETKU	65	-60	Izhod števca	Bool	%M24.1	Izhod števca

Slika 41: tabela vhodov in izhodov

9.0 NADGRADNJA NAPRAVE

Naprava je namenjena nadgradnjam in izboljšavam, katere bodo izboljšale proces izdelave, ki bo omogočal samostojno delovanje naprave brez posega človeka. Naprava je sestavljena tako, da jo lahko v vsakem trenutku prilagodimo in zamenjamo določene dele.

Mi smo napravo nadgradili z namestitvijo odvajalne posode, nosilec za zaslon na dotik, nadgradnja PLK-ja.

Napravo bi lahko nadgradili tako, da bi bila celotna avtomatizirana. V smislu, da bi pred začetkom avtomatsko neodšiljen material odrezali na določeno mero, ter da bi na koncu sortiralo izdelke po določenem številu v škatle. Dodali bi lahko tudi izklop v sili, ki bi deloval tako, da bi se podajalna roka vrnila v začetni položaj. Ker te funkcije v trenutnem stanju ni moramo podajalno roko ročno voditi do začetnega položaja.

Slika 42: načrtovanje

10.0 ZAKLJUČEK

Projekt je uspešno dosegel svoj namen. Na praktičnem primeru, primerljivem z realnim industrijskim okoljem, smo se lahko učili in uporabili znanje, ki smo ga pridobili skozi vsa leta šolanja. Naše poznavanje tovrstnih sistemov pa se je s projektom razširilo in nadgradilo. Naučili smo se, kako na samem začetku izbrati idejo, načrtovati, izdelati komponente in sestaviti napravo oz. sistem, ki je v koraku s trenutno industrijsko tehnologijo. MPS-postaja je v trenutnem stanju delno naš avtorski izdelek, saj smo določene elemente dodali k že do neke mere izdelani napravi.

POTRJENE/OVRŽENE HIPOTEZE

- 1. Zamenjati krmilnik POTRJENA HIPOTEZA
- 2. Napisati nov program v grafičnem načinu POTRJENA HIPOTEZA
- 3. Dodati zaslon na dotik POTRJENA HIPOTEZA
- 4. Napisati nov program za zaslon na dotik POTRJENA HIPOTEZA
- Dodati mrežno kartico za povezavo med zaslonom na dotik in krmilnikom – POTRJENA HIPOTEZA
- 6. Dodati števec- POTRJENA HIPOTEZA
- 7. Dodati škatlo za odšiljke POTRJENA HIPOTEZA
- 8. Dodati držalo za zaslon da dotik POTRJENA HIPOTEZA
- 9. Preko zaslona na dotik voditi napravo OVRŽENA HIPOTEZA

11.0 VIRI IN LITERATURA

- Jež, M., Kosec, L., Kuzman, K., Marek, E., Muren, H., Prosenc, V., Puhar, J., Žvab, D. in Žvokelj, J. (1992). Strojnotehnološki priročnik,. 6. izdaja Ljubljana: Tehniška založba Slovenija.
- Kraut, B. (2002). Krautov strojniški priročnik, 13. izdaja. Ljubljana: Littera picta
- Mehatronika (2009). Prevod dela: Fachkunde Mechatronik, 2nd Edition,
 1. izdaja. Ljubljana: Pasadena

12.0 IZJAVA

Mentor (-ica) ,_____ ____, v skladu z 2. in 17. členom Pravilnika

raziskovalne dejavnosti »Mladi za Celje« Mestne občine Celje, zagotavljam, da je v

raziskovalni nalogi z naslovom

katere avtorji (-ice) so ______, _____, _____; _____; _____;

- besedilo v tiskani in elektronski obliki istovetno,

- pri raziskovanju uporabljeno gradivo navedeno v seznamu uporabljene literature,

- da je za objavo fotografij v nalogi pridobljeno avtorjevo (-ičino) dovoljenje in je hranjeno v šolskem arhivu,

- da sme Osrednja knjižnica Celje objaviti raziskovalno nalogo v polnem besedilu na knjižničnih portalih z navedbo, da je raziskovalna naloga nastala v okviru projekta Mladi za Celje,

- da je raziskovalno nalogo dovoljeno uporabiti za izobraževalne in raziskovalne namene s povzemanjem misli, idej, konceptov oziroma besedil iz naloge ob upoštevanju avtorstva in korektnem citiranju,

- da smo seznanjeni z razpisni pogoji projekta Mladi za Celje

Celje, _____

žig šole

Podpis mentorja(-ice)

Podpis odgovorne osebe

DOVOLJENJE ZA OBJAVO

AVTORSKE FOTOGRAFIJE V RAZISKOVALNI NALOGI

Podpisani,_____, izjavljam, da sem avtor(-ica) fotografskega gradiva navedenega v priloženem seznamu in dovoljujem v skladu z 2. členom Pravilnika raziskovalne dejavnosti »Mladi za Celje« Mestne občine Celje, da se lahko uporabi pri pripravi raziskovalne naloge pod mentorstvom _____

z naslovom______,

katere avtorji (-ice) so ______, _____, _____; _____, _____;

Dovoljujem tudi, da sme Osrednja knjižnica Celje vključeno fotografsko gradivo v raziskovalno nalogo objaviti na knjižničnih portalih z navedbo avtorstva v skladu s standardi bibliografske obdelave.

Celje, _____

Podpis avtorja: