Mestna občina Celje, Mladi za Celje

Primerjava izkoristkov reverzibilne gorivne celice in baterije za večkratno polnjenje

raziskovalna naloga

avtorici: Maja Ocvirk, Eva Polšak
mentor: Boštjan Štih, prof. bio. in kem.

Osnovna šola Hudinja, februar 2018
Primerjava izkoristkov reverzibilne gorivne celice in baterije za večkratno polnjenje
Raziskovalna naloga

Avtorici:
Maja Ocvirk, 9.a
Eva Polšak, 9.a

Mentor:
Boštjan Štih, prof. bio. in kem.

Osnovna šola Hudinja
Celje, februar 2018
Vsebina

Vsebina ... 1
Kazalo slik .. 3
Kazalo grafikonov .. 3
Povzetek ... 4

1 Uvod .. 5

1.1 Teoretske osnove ... 5

1.1.1 Električna energija ... 5
1.1.2 Električno delo .. 5
1.1.3 Energijski zakon ... 5
1.1.4 O baterijah ... 5
1.1.5 Zgradba in delovanje baterije ... 6
1.1.6 Zakaj vodik? .. 7
1.1.7 Kaj je gorivna celica in kako deluje? ... 8
1.1.8 Kaj je elektroliza in kako delujejo elektrolitske aparature? 9

1.2 Opis raziskovalnega problema ... 11

1.3 Hipoteze .. 11

1.4 Raziskovalne metode ... 12

1.4.1 Delo z viri ... 12
1.4.2 Določanje količine električne energije .. 12
1.4.3 Določanje količine električne energije potrebne za elektrolizo vode.......................... 13
1.4.4 Določanje količine električne energije, ki se sprosti iz gorivne celice...................... 14
1.4.5 Merjenje porabe električne energije za polnjenje baterije ... 14
1.4.6 Merjenje količine električne energije, ki jo odda baterija ... 15

2 Osrednji del .. 16

2.1 Predstavitev raziskovalnih rezultatov .. 16

2.1.1 Merjenje napetosti in električnega toka med elektrolizo ... 16
2.1.2 Merjenje napetosti in električnega toka med delovanjem gorivne celice 17
2.1.3 Izkoristek delovanja reverzibilne gorivne celice ... 18
2.1.4 Merjenje temperature elektrolitske celice med elektrolizo 19
2.1.5 Merjenje napetosti in električnega toka pri polnjenju baterije 20
2.1.6 Merjenje napetosti in električnega toka med praznjenjem baterije 21
2.1.7 Izkoristek delovanja baterije za ponovno polnjenje .. 22
2.1.8 Merjenje temperature baterije med polnjenjem

2.2 Diskusija

3 Viri

4 Izjava
Kazalo slik

Slika 1: Avtobus na gorivne celice v Londonu..7
Slika 2: Preprosta shema gorivne celice ..8
Slika 3: Shema delovanja gorivne celice ..9
Slika 4: Shema elektrolize ..10
Slika 5: Delovno okno programa Logger Lite ..12
Slika 6: Shema vezave električnega kroga pri sintezi vodika ...13
Slika 7: Sestavljena aparatura za elektrolizo vode brez merilnih instrumentov13
Slika 8: Shema vezave električnega kroga pri merjenju električne energije, ki jo odda gorivna celica ..14
Slika 9: Polnilnik in baterija, ki sva ju uporabili pri poskusu15
Slika 10: Naprava za merjenje napetosti in toka med praznjenjem baterije15

Kazalo grafikonov

Grafikon 1: Rezultati ene od meritev električnega toka in napetosti med elektrolizo vode v elektrolitski celici ..16
Grafikon 2: Rezultati ene od meritev električnega toka in napetosti med delovanjem reverzibilne gorivne celice ..17
Grafikon 3: Izračunane vrednosti vezane električne energije pri elektrolizi in sproščene električne energije iz reverzibilne gorivne celice ter izračunani izkoristki za 5 primerov meritev ...18
Grafikon 4: Rezultati merjenja temperature reverzibilne gorivne celice med elektrolizo ..19
Grafikon 5: Rezultati ene od meritev porabe električnega toka in napetosti med polnjenjem baterije ...20
Grafikon 6: Rezultati ene od meritev električnega toka in napetosti med praznjenjem baterije ...21
Grafikon 7: Izračunane vrednosti vezane električne energije polnjenju baterije in sproščene električne energije pri praznjenju baterij ter izračunani izkoristki za 5 primerov meritev ...22
Grafikon 8: Rezultati merjenja temperature baterije med polnjenjem23
Povzetek

V najini raziskovalni nalogi sva primerjali električna izkoriščka baterije za ponovno polnjenje in reverzibilne gorivne celice. Ugotovili sva, da je električni izkorišček večji pri bateriji za ponovno polnjenje in sicer okoli 63%, medtem, ko je bil pri reverzibilni gorivni celici okoli 37%. Omenjeni podatki veljajo samo za konkretno baterijo in gorivno celico, ki sva ju uporabili pri poskusu.

Pri delu sva uporabljali metodo eksperimentiranja. Izvajali sva različne meritve in jih obdelali. Pri delu nisva imeli večjih težav.
1 Uvod

1.1 Teoretske osnove

1.1.1 Električna energija

Električna energija je energija, ki se kot električno delo prenaša z električnim tokom v tokokrogu in se kot pojem lahko nanaša na več tesno povezanih oblik energije:

- energija v električnem polju,
- potencialna energija električnega naboja,
- energija električnega toka. (Wikipedija, 2017)\(^1\)

1.1.2 Električno delo

Tudi tukaj je delo odvisno od moči vira in časa, kako dolgo to delo opravljamo. Tako z izpeljavo enačbe \(A=P\cdot t\) dobimo enačbo za električno delo \(A=U\cdot I\cdot t\).

Pri električnem delu pogosto namesto enote joule (\(J\)) uporabljamo enoto vat sekunda (\(W\cdot s\)) oziroma njuno izpeljavo kilovatna ura (\(kWh\)).

1.1.3 Energijski zakon

Energijski zakon zdaj razširimo še z električnim delom. Tako moramo enačbi \(\Delta W=A+Q\) upoštevati tudi delo, ki ga opravi električni tok. Tako dobimo spremenjeno enačbo \(\Delta W=A_e+A_m+Q\)

V zgornji enačbi pomenita: \(A_e\) - električno delo in \(A_m\) - mehansko delo. (Repnik, in drugi, 2014)\(^2\)

1.1.4 O baterijah

Baterije so ključna komponenta prenosnih elektronskih naprav in že dolgo časa jih srečujemo praktično na vsakem koraku. Brez baterije ali drugega prenosnega vira električne energije si težko predstavljamo današnjo družbo, saj se naprave, ki za delovanje potrebujejo vir napetosti, razvijajo v smeri vedno večje prenosljivosti. Tu ne gre le za zabavno elektroniko, telekomunikacijske naprave, ipd., ampak tudi

za življenjsko pomembne naprave (srčni spodbujevalniki, inzulinske črpalke, lavinske žolne, ipd.), za naprave, ki jih zaradi okoliščin ne moremo priključiti na električno omrežje (razni merilni sistemi in orodja za delo v gorah ali jamah potrebujemo prenosni vir napajanja) in nenazadnje vse več tudi za prevozna sredstva.

Danes poleg baterij poznamo še nekatere druge prenosne vire električne energije, npr. gorivne celice in superkondenzatorje, ki znajo biti v prihodnosti še kako pomembni. Toda trenutno so baterije daleč najpogostejši prenosni vir energije v vsakdanji rabi in tudi razvoj na tem področju jih bo gotovo še dolgo ohranil med uporabniki. Poleg uporabniku prijaznih dimenzij ter dokaj robustne sestave je razlog za vse pogostejšo uporabo baterij oz. električne energije tudi trenutna cena energetskih surovin.

1.1.5 Zgradba in delovanje baterije

Kot je bilo že omenjeno, je baterija naprava, ki shranjuje kemično energijo v aktivnih materialih ter jo direktno pretvori v električno z elektrokemično redoks reakcijo. Pri bateriji, ki se jo da ponovno napolniti, ta proces poteka v obratnem smislu. Baterijo sestavljajo elektrokemijske celice, ki so vezane v galvanske člene. Teh je v bateriji običajno več in so vezani zaporedno ali vzporedno (odvisno od želene napetosti in kapacitete).

Galvanski člen je v osnovi sestavljen iz treh delov:

- Anoda ali negativna elektroda odda elektron zunanjemu vezju, zato na njej poteka oksidacija.
- Katoda ali pozitivna elektroda sprejme elektron iz zunanjega vezja, zato na njej poteka redukcija.
- Elektrolit oz. ionski prevodnik deluje kot medij za prenos naboja med katodo in anodo.

Med delovanjem galvanskega člena na obeh elektrodah potekajo kemijske reakcije. (Kopač, 2009)3

1.1.6 Zakaj vodik?

Naša civilizacija porablja fosilna goriva, ki temeljijo na ogljiku, 100.000-krat hitreje, kot ta goriva nastajajo. Zaradi tega se pojavljajo številna vprašanja o zalogah in če bodo te lahko pokrile hitro rastočo, svetovno potrebo po energiji. Še pomembnejši argument je povezan s samo nafto. Fosilna goriva vsebujejo ogljik, izgorevanje bencina v naših avtomobilih pa vodi v strupeno onesnaževanje zraka v naših mestih in pripomore k temu, da se v našo atmosfero sproščajo velike količine ogljikovega dioksida. Kapičenje ogljikovega dioksida je vzrok za učinek tople grede in globalno ogrevanje. V več kot 100 letih so ljudje pokurili neznanske količine goriv na osnovi ogljika, kar je pripeljalo do tega, da se je naše ozračje segrelo. Globalno ogrevanje sedaj občutimo na lastni koži: vedno številčnejši orkanski viharji, širjenje puščav, krčenje gorskih ledenikov, topljenje polarnih ledenih kap, spreminjanje smeri morskih tokov in naraščanje morske gladine.

Naša družba potrebuje novo in obnovljivo gorivo, in dolgoročno gledano je vodik najboljša rešitev. Vodik je dejansko najbolj razširjen element v našem vesolju in vsebuje največ energije na enoto mase. To gorivo je brez vsebnosti ogljika in se lahko proizvaja bodisi z uporabo tradicionalnih virov energije ali obnovljivih virov energije, kot sta npr. sončna in vetrna energija. Takoj ko se vodik začne porabljati, se lahko v številnih izdelkih, ki ga uporabljajo, vključno z avtomobili, pretvori nazaj v ponovno uporabljivo energijo. To pomeni, da lahko svoje vsakodnevno gorivo proizvajamo na lokalni ravni in v neomejenih količinah. Če se vodik porablja v gorivni celici, sta rezultat elektrika in voda. Vodo, ki pri tem nastane, se lahko uporabi za ustvarjanje vodika in kisika, pri čemer ta ciklus poteka neprekinjeno in naravno, in to brez strupenih emisij. Po svetu je trenutno v razvoju več projektov »Vodikova avtocesta« in zgrajenih je že preko 200 bencinskih črpalk z vodikom, ki oskrbujejo prve avtomobile na vodikove gorivne celice.

Slika 1: Autobus na gorivne celice v Londonu
1.1.7 Kaj je gorivna celica in kako deluje?

Gorivna celica je naprava, ki lahko prevaja vodik v ponovno uporabljivo električno energijo. Sestavljena je iz več plasti iz močnega materiala. Med vodikom in kisikom steče reakcija, pri čemer se proizvedeta elektrika in voda brez kakršnegakoli izgorevanja. (Silverlit, 2008)⁴

Slika 2: Preprosta shema gorivne celice. (vir: Gorivne celice z uporabo obnovljivih virov energije, 2004)

Vsaka gorivna celica, ki jo poznamo danes, deluje na osnovni ravni po opisanem teoretičnem postopku. Na obeh elektrodah je katalizator, ki nadzoruje potek kemične reakcije. Na anodo dovajajo vodik (gorivo), kjer se ta razcepi na vodikove ione (protoni) in proste elektrone. Pri eni molekuli vodika (H₂) dobimo dva prosta elektrona. Elektroni »tečejo« prek električnega kroga na katodo (elektrika), na kateri se vodikovi ioni, elektroni in kisik (oksidant) združijo v vodo, pri čemer se sprošča tudi toplota. Hitro, učinkovito in predvsem čisto. Katere kemijske reakcije

dejansko potekajo znotraj celice, koliko prostih elektronov se sprošča in kaj prehaja prek elektrolita, pa je odvisno od tipa celice. Te pa imajo svoje prednosti in slabosti – ene same univerzalne celice pač ni. (Kodelja, 2008)⁵

Čeprav so gorivne celice znane že od leta 1839, je bilo potrebnih 120 let, da je NASA demonstrirala nekaj potencialnih možnosti za preskrbo z električno energijo med poletom v vesolje. Zaradi tega uspeha je v šestdesetih letih industrija začela spoznavati tržen potencial gorivnih celic, vendar so bili soočeni s tehnološkimi ovirami in visokimi investicijskimi stroški; z gospodarskega vidika gorivne celice v proizvodnji električne energije niso bile konkurenčne takratnim energetskim tehnologijam. Zato so od takrat aktivnosti na tem področju zelo intenzivne in kot rezultat tega sedaj stotine podjetij po svetu deluje na izdelavi takih gorivnih celic, da bodo konkurenčne ostalim tehnologijam. (Skupina avtorjev, 2004)⁶

1.1.8 Kaj je elektroliza in kako delujejo elektrolitske aparature?

Elektroliza vode je elektrokemijski postopek, pri katerem se voda razgradi na vodik in kisik s pomočjo električnega toka. Vir električnega toka je priključen na dve elektrodi, ki sta potopljeni v vodo. Razvijanje plinov lahko spremljamo kot nastajanje mehurčkov na obeh elektrodah.

Elektroliza je uporaba električne energije za sprožitev kemične spremembe. V obnovljivem vodikovem ciklusu se uporablja električna energija (iz obnovljivih virov) za ločevanje vezi med vodikom in kisikom v vodi in nujno sprostitev kot elementarna plina. Pri tem se vodik »shrani« kot obnovljiva energija.

Slika 4: Shema elektrolize

1.2 Opis raziskovalnega problema

Zanima naju:

- Ali je električni izkoristek - razmerje med prejeto in oddano električno energijo večji pri bateriji ali pri reverzibilni gorivni celici?
- Kaj je glavni razlog za energijsko izgubo?

1.3 Hipoteze

- Električni izkoristek je večji pri bateriji.
- Glavni razlog za energijsko izgubo je segrevanje reverzibilne gorivne celice med elektrolizo oz. segrevanje baterije med njenim polnjenjem.
1.4 Raziskovalne metode

1.4.1 Delo z viri

Pregledali sva nekaj enciklopedij, učbenika za kemijo in fiziko, tri raziskovalne naloge s podobno tematiko, nekaj spletnih virov, građivo, ki je bilo priloženo modelu avtomobilčka na gorivno celico ter priloženo zgoščenko.

1.4.2 Določanje količine električne energije

Meritve električnega toka in napetosti ter temperature sva izvajali z ampermetrom, voltmetrom in termometrom, ki sva jih priključili na računalnik in s programom Logger Lite zajemali meritve vsako sekundo. Nato sva iz zbranih podatkov izračunali električno energijo. To sva storili tako, da sva za vsako sekundo izračunali električno energijo po enačbi: \(W_e = U \cdot I \cdot t \), nato pa vse vrednosti sešteli.

Slika 5: Delovno okno programa Logger Lite
1.4.3 Določanje količine električne energije potrebne za elektrolizo vode

Pri delu sva uporabljali reverzibilno gorivno celico proizvajalca Horizon. Meritve sva izvajali tako, da sva v električni krog vključili vir električnega toka za elektrolizo, reverzibilno gorivno celico, ampermeter in voltmeter. Kot vir sva uporabili dve zaporedno vezani bateriji tipa AA. V tem primeru je bila reverzibilna gorivna celica porabnik, saj je v njej potekala elektroliza vode - sinteza vodika in kisika. Reverzibilno gorivno celico sva napolnili z destilirano vodo, ki sva jo elektrolizirali 120 sekund pri napetosti približno 1,7 V in toku 0,5 A ter pri tem pridobili določeno količino vodika in kisika. Med elektrolizo je bila reverzibilna gorivna celica nameščena v škatlici iz stiropora, saj sva nano pritrdili tudi senzor za merjenje temperature in merili spremembo temperature med elektrolizo vode.

Slika 6: Shema vezave električnega kroga pri sintezi vodika

Slika 7: Sestavljena aparatura za elektrolizo vode brez merilnih instrumentov
1.4.4 Določanje količine električne energije, ki se spristi iz gorivne celice

Sestavili sva nov električni krog. V njem je bila reverzibilna gorivna celica vir električnega toka, tok pa je tekel skozi stalni upornik z upornostjo 4 Ω. Spet sva v električni krog vključili ampermeter in voltmeter za merjenje električnega toka in napetosti. Merili sva napetost, tok in čas od sklenitve električnega kroga do trenutka, ko se je rezervoar z vodikom popolnoma izpraznil in sta napetost in tok padla na zelo nizko vrednost, ki se ni več spreminjala. Iz teh podatkov sva nato izračunali količino električne energije, ki se je sprostila v gorivni celici.

Meritve sva večkrat ponovili in izločili vse tiste, ki so zelo odstopale. Iz preostalih sva nato izračunali povprečno vrednost.

![Diagram](attachment:shema_električnega_kroga.png)

Slika 8: Shema vezave električnega kroga pri merjenju električne energije, ki jo odda gorivna celica

1.4.5 Merjenje porabe električne energije za polnjenje baterije

1.4.6 Merjenje količine električne energije, ki jo odda baterija

Sestavili sva nov električni krog. V njem je bila baterija vir električnega toka, tok pa je tekel skozi stalni upornik z upornostjo 4 Ω. Spet sva v električni krog vključili Vernierjeva vmesnika za merjenje električnega toka in napetosti. Merili sva napetost, tok in čas od sklenitve električnega kroga do trenutka, ko se je baterija popolnoma izpraznila in sta napetost in tok padla na zelo nizko vrednost, ki se ni več spreminjala. Iz teh podatkov sva nato izračunali količino električne energije, ki jo je oddala baterija.

Meritve sva večkrat ponovili in izločili vse tiste, ki so zelo odstopale. Iz preostalih sva nato izračunali povprečno vrednost.
2 Osrednji del

2.1 Predstavitev raziskovalnih rezultatov

2.1.1 Merjenje napetosti in električnega toka med elektrolizo

Grafikon 1: Rezultati ene od meritev električnega toka in napetosti med elektrolizo vode v elektrolitski celici.

Iz grafikona za ta konkreten primer elektrolize je razvidno, da je skozi reverzibilno gorivno celico tekel tok 0,62 A, napetost pa je bila v povprečju okoli 1,88 V.
2.1.2 Merjenje napetosti in električnega toka med delovanjem gorivne celice

Iz grafikona za ta konkreten primer delovanja reverzibilne gorivne celice je razvidno, da se je večina vodika porabila v prvih 250 sekundah. V tem času je skozi upornik tekel tok približno 0,13 A, napetost pa je bila okoli 0,9 V. Po tem času sta vrednosti za napetost in tok hitro upadli.
2.1.3 Izkoristek delovanja reverzibilne gorivne celice

Iz grafikona 3: Izračunane vrednosti vezane električne energije pri elektrolizi in sproščene električne energije iz reverzibilne gorivne celice ter izračunani izkoristki za 5 primerov meritev.

Iz grafikona je razvidno, da se vrednosti električne energije, ki se je vezala pri elektrolizi, gibljejo med 128 J in 187 J, vrednosti sproščene električne energije v povratni reakciji pa med 46 J in 64 J. Izračunani izkoristki gorivne celice so tako med 28 % in 47 %.

Povprečni izkoristek konkretne gorivne celice, ki sva jo uporabili pri poskusu, je tako približno 37 %.
2.1.4 *Merjenje temperature elektrolitske celice med elektrolizo*

Grafikon 4: Rezultati merjenja temperature reverzibilne gorivne celice med elektrolizo

Iz grafikona je razvidno, da se reverzibilna gorivna celica med elektrolizo v dveh minutah segreje za skoraj 1°C.
2.1.5 Merjenje napetosti in električnega toka pri polnjenju baterije

Grafikon 5: Rezultati ene od meritev porabe električnega toka in napetosti med polnjenjem baterije

Iz grafikona za ta konkreten primer polnjenja baterije je razvidno, je polnilnik ves čas polnil baterijo s konstantnim tokom 0,62 A, napetost pa je bila najprej 3 V, nato pa se je zmanjšala na približno 2,5 V. Polnjenje baterije je trajalo 1520 sekund.
2.1.6 Merjenje napetosti in električnega toka med praznjenjem baterije

Grafikon 6: Rezultati ene od meritev električnega toka in napetosti med praznjenjem baterije.

Iz grafa za ta konkreten primer praznjenja baterije je razvidno, se je baterija v glavnem izpraznila po slabih dveh urah (okoli 7000 s). V tem času je skozi upornik tekel tok približno 0,18 A, napetost pa je bila okoli 1,15 V. Po tem času sta vrednosti za napetost in tok hitro upadli. Baterija se je dokončno izpraznila po približno 3,4 ure.
2.1.7 Izkoristek delovanja baterije za ponovno polnjenje

Grafikon 7: Izračunane vrednosti vezane električne energije polnjenju baterije in sproščene električne energije pri praznjenju baterije ter izračunani izkoristki za 5 primerov meritev.

Iz grafikona je razvidno, da se vrednosti električne energije, vezane pri polnjenju baterije, gibljejo med 2139 J in 2710 J, vrednosti sproščene električne energije pri praznjenju baterije pa med 1383 J in 1821 J. Izračunani izkoristki baterije so tako med 52 % in 72 %.

Povprečni izkoristek konkretne baterije za ponovno polnjenje, ki sva jo uporabili pri poskusu, je tako približno 63 %.
2.1.8 Merjenje temperature baterije med polnjenjem

![Graph showing temperature increase over time during charging.](image)

Grafikon 8: Rezultati merjenja temperature baterije med polnjenjem

Iz grafikona je razvidno, da se baterija med polnjenjem v 25 minutah segreje za dobrih 36°C.
2.2 Diskusija

Prav tako uporabljalmo vedno več prenosnih elektronskih naprav, ki so porabniki električne energije in v glavnem delujejo na baterije. Vedno bolj pa postajajo zanimive gorivne celice, ki so zaradi svoje majhnosti primerne za vgradnjo v različne naprave in vozila.

Zato naju je zanimalo, kakšen je električni izkoristek pri delovanju reverzibilne gorivne celice in kakšen pri bateriji za ponovno polnjenje.

Na začetku sva postavili hipotezo, ki pravi, da je električni izkoristek večji pri bateriji. To hipotezo sva potrdili. Kot je razvidno iz grafikona 3 je povprečni izkoristek konkretno reverzibilne gorivne celice, ki sva jo uporabili pri poskusu, približno 37 %. Kot navaja Belšak (2003) se dejanski električni izkoristek vodikove gorivne celice giblje med 35 in 65%. Iz grafikona 7 pa je razvidno, da je povprečni izkoristek konkretno baterije za ponovno polnjenje, ki sva jo uporabili pri poskusu, približno 63 %.

Sklepali sva, da se del električne energije, ki jo dovajamo v elektrolitsko celico za sintezo vodika oz. pri polnjenju baterije, pretvori v toploto. Zato sva postavili drugo hipotezo, ki pravi, da je glavni razlog za energijsko izgubo segrevanje reverzibilne gorivne celice med elektrolizo oz. segrevanje baterije med njenim polnjenjem.

A kot je razvidno iz grafikona 4, se je zunanjost elektrolitske celice med elektrolizo segrela le za okoli 1°C, kar ne more biti razlog za tako veliko razliko med sprejeto in oddano električno energijo. Zato sklepava, da se glavni razlog skriva v dejstvu, da je vodik zgrajen iz izredno majhnih molekul, zato difundira skozi materiale (cevke, ohišje elektrolitske celice). Kot navaja Ausec (2011), če upoštevamo vse

izgube (pri gorivnih celicah na zrak so to npr. razvlaževanje zraka, stiskanje na večji tlak ipd.), je povprečni izkoristek gorivnih celic v avtomobilih okrog 36%.
Druge hipoteze tako ne moreva potrditi, saj je sprememba temperaturi pri reverzibilni gorivni celici premajhna, da bi lahko bila razlog za nizek izkoristek, prav tako pa se, verjetno podobno kot pri bateriji, kemična energija pri delovanju gorivne celice ne pretvori v električno v celoti. Segrevanje baterije pri polnjenju bi lahko bil razlog za izgubo električne energije, a do izgub prihaja tudi pri praznjenju, saj se kemična energija ne pretvori v električno v celoti.
3 Viri

 http://www.mojmikro.si/geekfest/pogled_naprej/gorivne_celice
 http://hr.wikipedia.org/wiki/Elektroliza_vode
 https://sl.wikipedia.org/wiki/Baterija_(elektrika)
 https://sl.wikipedia.org/wiki/Elektri%C4%8Dna_energija
4 Izjava

Mentor (-ica), Boštjan Štih, v skladu z 2. in 17. členom Pravilnika raziskovalne dejavnosti »Mladi za Celje« Mestne občine Celje, zagotavljam, da je v raziskovalni nalogi naslovom Primerjava izkoristka reverzibilne gorivne celice in baterije za večkratno polnjenje, katere avtorici sta Maja Ocvirk in Eva Polšak:

- besedilo v tiskani in elektronski obliki istovetno;
- pri raziskovanju uporabljeno građivo navedeno v seznamu uporabljene literature;
- da je za objavo fotografij v nalogi pridobljeno avtorjevo (-ičino) dovoljenje in je hranjeno v šolskem arhivu;
- da sme Osrednja knjižnica Celje objaviti raziskovalno nalogo v polnem besedilu na spletnih portalih z navedbo, da je nastala v okviru projekta Mladi za Celje;
- da je raziskovalno nalogo dovoljeno uporabiti za izobraževalne in raziskovalne namene s povzemanjem misli, idej, konceptov oziroma besedil iz naloge ob upoštevanju avtorstva in korektnem citiranju;
- da smo seznanjeni z razpisni pogoji projekta Mladi za Celje.

Celje, 23. 2. 2018

Osnovna šola Hudinja

Podpis mentorja(-ice)

Podpis odgovorne osebe